## **Amination of Ketenes: Kinetic and Mechanistic Studies**

Annette D. Allen and Thomas T. Tidwell\*

Department of Chemistry, University of Toronto Toronto, Ontario, Canada M5S 3H6

Received October 12, 1998

The rate constants for reaction of  $PhMe_2SiCH=C=O$  (6) with amines to form amides in  $CH_3CN$ are best fitted with a mixed second- and third-order dependence on [amine], in stark contrast to previous studies of  $Ph_2C=C=O$  and other reactive ketenes in which only a first-order dependence on [amine] was observed in  $H_2O$  or in  $CH_3CN$ . Derived third-order rate constants for **6** depend on the amine basicity, with a  $1.7 \times 10^7$  greater reactivity for *n*-BuNH<sub>2</sub> compared to CF<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>. These kinetic results are consistent with recently reported theoretical studies for reaction of  $CH_2=C=O$ with NH<sub>3</sub>. For **6** the relative reactivity k(n-BuNH<sub>2</sub>)/ $k(H_2O)$  is estimated to be 10<sup>13</sup> in CH<sub>3</sub>CN. The crowded ketene t-Bu<sub>2</sub>C=C=O (10) is enormously deactivated toward amination and reacts in neat *n*-BuNH<sub>2</sub> with rates  $10^{12}$  and  $2 \times 10^5$  times slower than those for *t*-BuCH=C=O and *t*-BuC(*i*-Pr)= C=O (11), respectively. The observed rate constants for 11 also show a higher than first-order dependence on [n-BuNH<sub>2</sub>]. The absence of higher order kinetic terms in [amine] for more reactive ketenes is attributed to irreversibility of addition of an initial amine to the ketene, while with more stable ketenes the initial step is reversible and later steps involving additional amine molecules are kinetically significant. The general acid  $CF_3CH_2NH_3^+$  catalyses the addition of  $CF_3CH_2NH_2$  to **6** in a process independent of  $[CF_3CH_2NH_2]$ . The reactivity of **6** with *n*-BuNH<sub>2</sub> is 370 times greater in CH<sub>3</sub>CN compared to isooctane, a result attributed to the polar nature of the transition state and possible catalysis of the addition by CH<sub>3</sub>CN.

The reaction of ketenes with amines was reported in the first publication on ketenes<sup>1a</sup> and usually proceeds rapidly and quantitatively at ambient temperatures to provide amides.<sup>1</sup> The reaction of chiral amines to create amides with high enantiomeric excess at the new chiral center has received particular attention.<sup>2</sup> In early studies of the kinetics of ketene amination, Satchell and coworkers<sup>3</sup> observed dependences of the rate of reaction not only on [amine] but also on [amine]<sup>2</sup>. These reactions were interpreted as involving initial addition to the C= C bond of the ketenes, but this viewpoint has been disputed.1c Detailed studies of the reactions of dienvlketenes with amines by Quinkert and co-workers<sup>4</sup> have included direct observation by UV of intermediates in the reaction assigned as zwitterions and amide enols, and kinetic studies of their formation. Other recent studies of ketene amination<sup>5</sup> include kinetic measurements of the reactions of Ph<sub>2</sub>C=C=O with various amines in H<sub>2</sub>O<sup>5a</sup> and of reactions of ketenes with amines in CH<sub>3</sub>CN with the observation by IR of transient amide enols (or zwitterions),<sup>5b,c</sup> the observation of a stable amide enol from amination of a crowded diarylketene,<sup>5d</sup> and studies of the reactivity of dienyl-<sup>5e</sup> and acylketenes<sup>5f,g</sup> with alcohols and amines.

As part of our studies of ketene reactivity,<sup>6</sup> we recently<sup>6e</sup> made a theoretical examination of the reaction of  $CH_2=C=O$  with  $NH_3$  and found for the gas phase that reaction with two  $NH_3$  molecules preferentially proceeds through a nonplanar transition state **1** involving in-plane attack by the nucleophilic nitrogen at the carbonyl carbon, with hydrogen-bonding assistance by the second  $NH_3$  molecule leading to an amide enol/ammonia complex **2** (eq 1).<sup>6e</sup> Tautomerization of the amide enol **3** preferentially occurs with catalysis by  $NH_3$  in a subsequent step through the complex **4** to give the amide **5** (eq 2). This initial formation of the amide enol has a lower barrier than alternatives involving addition of only a single  $NH_3$  to

 <sup>(1) (</sup>a) Staudinger, H. Chem. Ber. 1905, 38, 1735–1739. (b) Staudinger, H. Die Ketene, Verlag Enke: Stuttgart, 1912. (c) Tidwell, T. T. Ketenes; Wiley: New York, 1995. (d) Schaumann, E.; Scheiblich, S. Methoden der Organischen Chemie, Thieme Verlag: Stuttgart, 1993; Vol. E15, Part 3, Chapters 4, 6, and 8.

<sup>(2) (</sup>a) Morrison, J. D.; Mosher, H. S. Asymmetric Organic Reactions;
Prentice Hall: New York, 1971. (b) Buschmann, H.; Scharf, H.;
Hoffmann, N.; Esser, P. Angew. Chem., Int. Ed. Engl. 1991, 30, 447–515. (c) Pracejus, H. Fortschr. Chem. Forsch. 1967, 8, 493–553. (d)
Schultz, A. G.; Kulkarni, Y. S. J. Org. Chem. 1984, 49, 5202–5206. (e)
Miller, J. R.; Pulley, S. F.; Hegedus, L. S.; De Lombaert, S. J. Am. Chem. Soc. 1992, 114, 5602–5607.

<sup>(3) (</sup>a) Briody, J. M.; Satchell, D. P. N. *Tetrahedron* 1966, *22*, 2649–2653.
(b) Lillford, P. J.; Satchell, D. P. N. *J. Chem. Soc. B* 1967, 360–365.
(c) Lillford, P. J.; Satchell, D. P. N. *J. Chem. Soc. B* 1968, 54–57.
(d) Lillford, P. J.; Satchell, D. P. N. *J. Chem. Soc. B* 1970, 1016–1019.

<sup>(</sup>d) Lillford, P. J.; Satchell, D. P. N. J. Chem. Soc. B **1970**, 1016-1019.
(d) (a) Quinkert, G.; Scherer, S.; Reichert, D.; Nestler, H.-P.;
Wennemers, H.; Ebel, A.; Urbahns, K.; Wagner, K.; Michaelis, K.-P.;
Wiech, G.; Prescher, G.; Bronstert, B.; Freitag, B.-J.; Wicke, I.; Lisch, D.; Belik, P.; Crecelius, T.; Hörstermann, D.; Zimmermann, G.; Bats, J. W.; Dürner, G.; Rehm, D. *Helv. Chim. Acta* **1997**, *80*, 1683-1772.
(b) Quinkert, G.; Englert, H.; Cech, F.; Stegk, A.; Haupt, E.; Liebfritz, D.; Rehm, D. *Chem. Ber.* **1979**, *112*, 310-343. (c) Quinkert, G. *Pure Appl. Chem.* **1973**, *33*, 285-316.

<sup>(5) (</sup>a) Andraos, J.; Kresge, A. J. J. Am. Chem. Soc. 1992, 114, 5643–5646.
(b) Wagner, B. D.; Arnold, B. R.; Brown, G. W.; Lusztyk, J. J. Am. Chem. Soc. 1998, 120, 1827–1834.
(c) de Lucas, N. C.; Netto, J.; Lusztyk, J.; Wagner, B. D.; Scaiano, J. C. Tetrahedron Lett. 1997, 38, 5147–5150.
(d) Frey, J.; Rappoport, Z. J. Am. Chem. Soc. 1996, 118, 3994–3995.
(e) Barton, D. H. R.; Chung, S. K.; Kwon, T. W. Tetrahedron Lett. 1996, 37, 3631–3634.
(f) Birney, D. M.; Xu, X.; Ham, S.; Huang, X. J. Org. Chem. 1997, 62, 7114–7120.
(g) Liu, R. C.-Y.; Lusztyk, J.; McAllister, M. A.; Tidwell, T. T.; Wagner, B. D. J. Am. Chem. Soc. 1998, 120, 6247–6251.

<sup>(6) (</sup>a) Zhao, D.-c.; Allen, A. D.; Tidwell, T. T. J. Am. Chem. Soc.
1993, 115, 10097-10103. (b) Allen, A. D.; Ma, J.; McAllister, M. A.;
Tidwell, T. T.; Zhao, D.-c. J. Chem. Soc., Perkin Trans. 2 1995, 847-851. (c) Egle, I.; Lai, W.-Y.; Moore, P. A.; Renton, P.; Tidwell, T. T.;
Zhao, D.-c. J. Org. Chem. 1997, 61, 18-25. (d) Liu, R.; Marra, R.;
Tidwell, T. T. J. Org. Chem. 1996, 61, 6227-6232. (e) Sung, K.; Tidwell,
T. T. J. Am. Chem. Soc. 1998, 120, 3043-3048. (f) Allen, A. D.; Tidwell,
T. T. Tetrahedron Lett. 1991, 32, 847-850. (g) Kabir, S. H.; Seikaly,
H. R.; Tidwell, T. T. J. Am. Chem. Soc. 1987, 109, 2774-2780.



the C=O bond, or addition involving one or two NH<sub>3</sub> molecules to the C=C bond giving the amide directly, even though the latter process is energetically much more favorable than initial formation of an amide enol. The calculated barrier for conversion of 2 via 4 to the product amide 5 is higher than that for the reversion of 2 to reactants, suggesting that the formation of 2 would be reversible.

Recent kinetic studies of the reactions of amines with  $Ph_2C=C=O$  in  $H_2O$ ,<sup>5a</sup> or of amines with various ketenes in  $CH_3CN$ ,<sup>5b,c,g</sup> have however shown a first-order dependence of the rates on [amine]. In  $H_2O$  the reactivities of various amines showed small differences and no systematic dependence on the  $pK_a$  of the amine conjugate acids.<sup>5a</sup> Studies of ketene amination in  $CH_3CN$  with time-resolved infrared detection (TRIR) also showed only a first-order rate dependence on [amine] and allowed the detection of amide enol (or zwitterionic) intermediates and the amine-catalyzed conversion of these species to amides.<sup>5b,c</sup>

To elucidate the discrepancy between the theoretical prediction that ketene amination would prefer transition states involving two amine molecules rather than one, and the experimental observations in both  $H_2O^{5a}$  and  $CH_3CN^{5b}$  of a first-order dependence on [amine], we have carried out further kinetic studies and now report results for ketene amination that are consistent with the theoretical studies and show both second and third-order terms in [amine]. We have also observed very large kinetic effects due to amine nucleophilicity and substrate steric crowding, general acid catalysis of amination, and a significant solvent effect.

## **Results and Discussion**

The ketene PhMe<sub>2</sub>SiCH=C=O (**6**)<sup>6d</sup> is a long-lived species that reacts with amines at convenient rates at ambient temperatures. In previous studies<sup>6f</sup> the analogous silylketene Me<sub>3</sub>SiCH=C=O was found to be less reactive than *t*-BuCH=C=O toward H<sub>2</sub>O by a factor of 60, a result attributed to ground-state stabilization of the ketene by Me<sub>3</sub>Si.<sup>6f</sup> By contrast the acid-catalyzed hydration is accelerated, as  $k_{\rm H^+}/k_{\rm H_2O}$  (M<sup>-1</sup>) is 100 times greater for Me<sub>3</sub>SiCH=C=O than for *t*-BuCH=C=O, an effect attributed to hyperconjugative stabilization by silicon of the developing Me<sub>3</sub>SiCH<sub>2</sub>C<sup>+</sup>=O ion in the transition state.<sup>6f</sup>

Reaction of the ketene 6 with *n*-BuNH<sub>2</sub> and with CF<sub>3</sub>-CH<sub>2</sub>NH<sub>2</sub> in CH<sub>3</sub>CN at room temperature cleanly formed the corresponding amides 7a and 7b as the only detectable products. The rates of the reaction of 6 in CH<sub>3</sub>CN with excess amine were followed using either stoppedflow or conventional UV spectroscopic detection by the disappearance of the ketene UV absorption and give good pseudo-first-order kinetics, with rate constants that are much smaller than those of any of the ketenes studied in a previous survey of ketene reactivities with amines in CH<sub>3</sub>CN.<sup>5b</sup> However, in contrast to previous studies, the measured rate constants for 6 are not linear in [amine], and so a total of 10 rate expressions were tested to fit the data, as reported in the Supporting Information (Table 7 and plots 1-23). The best fit was found using eq 3, with values of  $k_a = (2.26 \pm 0.08) \times 10^5 \,\mathrm{M^{-2} \, s^{-1}}$  and  $k_b = (3.80 \pm 0.22) \times 10^6 \text{ M}^{-3} \text{ s}^{-1}$  for *n*-BuNH<sub>2</sub> (Figure 1a). Similar results were found for the reaction of 6 with

$$k_{\rm obs} = k_{\rm a} [\rm amine]^2 + k_{\rm b} [\rm amine]^3$$
 (3)

morpholine and with  $CF_3CH_2NH_2$ , for which the data were also fit best by eq 3 (Figure 1b,c). The derived values of  $k_a$  and  $k_b$  are collected in Table 1, and the measured rate constants are given in Table 2 (Supporting Information). Rate expressions such as  $k_{obs} = k_a[amine]^2$  showed significant deviations of experimental points from the correlation in some regions of the data.

A simplified reaction scheme for ketene amination is shown in eqs 4 and 5, where the amide enol complex **8** corresponds to structure **2** previously calculated for the reaction of  $CH_2=C=O$  with  $NH_3$  (eqs 1 and 2).<sup>6e</sup> In this process two amine molecules participate in the reversible formation of the amide enol/amine complex **8**, which undergoes conversion to the amide **7** by two competitive processes, one of which involves catalysis by another amine molecule. The resulting rate expression in eq 6 and the steady state eq 7 lead to eq 10, which has the form of eq 3, with  $k_c$ [amine]  $\ll$  1, and  $k_a = k_1 k_2/(k_{-1} + k_2)$ ,  $k_b = k_1 k_3/(k_{-1} + k_2)$ , and  $k_c = k_3/(k_{-1} + k_2)$ . Fitting the data to eq 10 gave a poorer fit of the data, with  $k_c$ -[amine]  $\ll$  1 over almost the entire range of [amine] (see Supporting Information, Table 7).

ketene + 2 amine 
$$\frac{k_1}{k_{-1}}$$
 complex (8)  $\xrightarrow{k_2}$  amide (7) (4)

complex (8) + amine 
$$\xrightarrow{\kappa_3}$$
 amide (7) (5)

$$-d[ketene]/dt = k_1[ketene][amine]^2 - k_{-1}[8]$$
(6)

d[**8**]/d
$$t = k_1$$
[ketene][amine]<sup>2</sup> -  
( $k_{-1} + k_2 + k_3$ [amine])[**8**] = 0 (7)

 $-d[ketene]/dt = k_1[ketene][amine]^2 - k_1k_{-1}[ketene][amine]^2/(k_{-1} + k_2 + k_3[amine])$ (8)

 $k_1 k_{-1}$ [ketene][amine] / $(k_{-1} + k_2 + k_3$ [amine]) (8)

 $-d[ketene]/dt = [(k_1k_2[amine]^2 + k_1k_3[amine]^3)/(k_{-1} + k_2 + k_3[amine])][ketene] (9)$ 

$$-d[ketene]/dt = [(k_a[amine]^2 + k_b[amine]^3)/(1 + k_c[amine])][ketene] (10)$$

The rate expression for eq 3 is also obtained from eq 11 and the equilibrium expression eq 12.

Table 1. Derived Rate Constants for Amination of PhMe<sub>2</sub>SiCH=C=O

|                                                                                                               |                                 |                                       |                                 | -                                     |                      |             |
|---------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------------|----------------------|-------------|
| amine                                                                                                         | solvent                         | $k_{\rm a}~({ m M}^{-2}~{ m s}^{-1})$ | $k_{\mathrm{a}}^{\mathrm{rel}}$ | $k_{\rm b}~({ m M}^{-3}~{ m s}^{-1})$ | $k_{ m b}^{ m rel}$  | $pK_{BH^+}$ |
| <i>n</i> -BuNH <sub>2</sub>                                                                                   | CH <sub>3</sub> CN <sup>a</sup> | (2.26 $\pm$ 0.08) $	imes$ 10 $^5$     | 1.0                             | (3.80 $\pm$ 0.22) $	imes$ 10 $^6$     | 1.0                  | 10.6        |
|                                                                                                               | isooctane <sup>b</sup>          |                                       |                                 | $(2.01 \pm 0.04) 	imes 10^4$          |                      |             |
| morpholine                                                                                                    | CH <sub>3</sub> CN <sup>c</sup> | $(4.20 \pm 0.28) 	imes 10^4$          | 1/5.4                           | $(2.63 \pm 0.53) 	imes 10^5$          | 1/14.4               | 8.49        |
| CF <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub>                                                               | $CH_3CN^d$                      | $0.292\pm0.010$                       | $1/7.7 	imes 10^{5}$            | $0.220\pm0.013$                       | $1/1.7 	imes 10^{7}$ | 5.59        |
| CF <sub>3</sub> CH <sub>2</sub> NH <sub>3</sub> <sup>+</sup> /CF <sub>3</sub> CH <sub>2</sub> NH <sub>2</sub> | CH <sub>3</sub> CN <sup>e</sup> |                                       |                                 |                                       |                      |             |

<sup>*a*</sup> [*n*-BuNH<sub>2</sub>]  $4.98 \times 10^{-2}$  to  $4.03 \times 10^{-4}$  M, [ketene] =  $6.8 \times 10^{-5}$  M. <sup>*b*</sup> [*n*-BuNH<sub>2</sub>]  $6.10 \times 10^{-2}$  to  $9.74 \times 10^{-3}$  M. <sup>*c*</sup> [morpholine]  $6.28 \times 10^{-2}$  to  $4.04 \times 10^{-4}$  M. <sup>*d*</sup> [CF<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>] = 1.051 to  $1.471 \times 10^{-2}$  M. <sup>*e*</sup>  $k_{BH^+} = 3.91 \pm 0.05$  [CF<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+-</sup>O<sub>2</sub>CCF<sub>3</sub>] s<sup>-1</sup> M<sup>-1</sup>.

$$-d[ketene]/dt = d[amide]/dt = (k_2 + k_3[amine])[8]$$
(11)

$$k_1/k_{-1} = [8]/[ketene][amine]^2$$
 (12)

-d[ketene]/dt =

$$[(k_1k_2/k_{-1})[amine]^2 + (k_1k_3/k_{-1})[amine]^3][ketene]$$
(13)

The rate law for this process (eq 10) agrees with the experimental data for the measured pseudo-first-order rate constants in the presence of excess amine (eq 3). In the previous theoretical calculations,<sup>6e</sup> no attempt was made to calculate a reaction pathway involving a third amine molecule. A model (9) is shown for an NH<sub>3</sub> catalyzed isomerization of the amide enol/NH<sub>3</sub> complex **2** which leads to the amide product **5**. In the alternative path not involving a third amine molecule isomerization of **2** to **4** (eq 2) may occur, or the catalytic role may be taken by the CH<sub>3</sub>CN solvent.



The reactivity of **6** in CH<sub>3</sub>CN with morpholine and with CF<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub> was also fit best by eq 3 (Figure 1b,c), with rate ratios  $k_{n-\text{BuNH}_2}/k_{\text{morpholine}}$  of 5.4 and 14.4, and  $k_{n-\text{BuNH}_2}/k_{\text{CF}_3\text{CH}_2\text{NH}_2}$  of 7.7 × 10<sup>5</sup> and 1.7 × 10<sup>7</sup>, for  $k_a$  and  $k_b$ , respectively. The correlations of log  $k_a$  or log  $k_b$  with p $K_{\text{BH}^+}$  of the amines are only fair, with slopes of 1.18 and 1.45, respectively; however, because of the various roles of several amine molecules in this multistep mechanism the absence of a good correlation is not unexpected. The absence of a strong dependence of  $k_2$  on amine basicity for reaction of Ph<sub>2</sub>C=C=O with amines in H<sub>2</sub>O<sup>5a</sup> may be attributed to hydrogen bonding of H<sub>2</sub>O to the amine lone pair, as demonstrated by McClelland et al., for the amination of carbocations.<sup>7a</sup>

The reactivity of **6** with *n*-BuNH<sub>2</sub> in isooctane was also examined, and the observed first-order rate constants at different [*n*-BuNH<sub>2</sub>] are given in Table 3 (Supporting Information). The data were correlated by eq 3, but with an insignificant value for  $k_a$  for the second-order term, and the best correlation (Figure 3, Supporting Information) was with a third-order term only,  $k_{obs} = (2.01 \pm 0.04) \times 10^4 \, \text{M}^{-3} \, \text{s}^{-1} \, [n$ -BuNH<sub>2</sub>]<sup>3</sup>. Calculated values of  $k_{obs}$  for **6** in CH<sub>3</sub>CN at [*n*-BuNH<sub>2</sub>] of  $6.10 \times 10^{-2}$  and  $0.974 \times 10^{-2}$  M of 1700 and 24.9  $\text{s}^{-1}$  give rate ratios for **6**  $k_{CH_3CN}/k_{\text{isooctane}}$  of 370 and 375, respectively. The data set for *n*-BuNH<sub>2</sub>

in isooctane solvent is not as large as in  $CH_3CN$ , and the possibility that a larger data set would favor a somewhat different rate law cannot be excluded. However, the observed rate difference with solvent is secure.

The second- and third-order dependences of the rate of **6** on [n-BuNH<sub>2</sub>] in CH<sub>3</sub>CN are consistent with the process outlined in eqs 4–10, and the much greater observed reactivity with the more basic n-BuNH<sub>2</sub> shows the strong nucleophilic component in the reaction. The significantly greater reactivity in CH<sub>3</sub>CN compared to isooctane may arise from stabilization of a polar transition state and from hydrogen-bond acceptor interactions by CH<sub>3</sub>CN, and the absence of the second-order term in [n-BuNH<sub>2</sub>] for **6** in isooctane suggests that this poorly coordinating solvent cannot substitute for a third amine molecule.

The reactivity of *t*-BuCH=C=O showed<sup>5b</sup> a linear dependence of  $k_{obs}$  on [*n*-BuNH<sub>2</sub>] in CH<sub>3</sub>CN, and so because PhMe<sub>2</sub>SiCH=C=O (**6**) shows a higher order dependence on [*n*-BuNH<sub>2</sub>] (eq 3), the rate ratio  $k_{obs}$  (*t*-BuCH=C=O)/ $k_{obs}$  (**6**) varies from  $1.1 \times 10^4$  to 80 over the measured range of [*n*-BuNH<sub>2</sub>] (4.03 × 10<sup>-4</sup> to 4.98 × 10<sup>-2</sup> M). Over this range of concentrations the fraction of the reaction of **6** due to the term in [*n*-BuNH<sub>2</sub>]<sup>2</sup> changes from 0.995 to 0.544.

A recent analogy to the third-order rate dependences found here is the observed dependence on  $[H_2O]^3$  of quenching of fluorescence of excited *m*-hydroxy-1,1-diarylalkenes, which was attributed to proton transfer via a water trimer.<sup>7b</sup>

Previously<sup>6d</sup> the rate constant for hydration of PhMe<sub>2</sub>-SiCH=C=O (**6**) in 11.1 M H<sub>2</sub>O in CH<sub>3</sub>CN at 25 °C was reported as  $8.24 \times 10^{-4}$  s<sup>-1</sup>, and the calculated rate constant from eq 3 for reaction of **6** with 11.1 M *n*-BuNH<sub>2</sub> is  $5.2 \times 10^9$  s<sup>-1</sup>, giving an enormous rate ratio k(*n*-BuNH<sub>2</sub>)/k(H<sub>2</sub>O) for **6** of 10<sup>13</sup>. Even at 0.0498 M *n*-BuNH<sub>2</sub>, the highest concentration used in these studies, the observed rate constant for **6** of 990 s<sup>-1</sup> is 10<sup>6</sup> greater than the hydration rate constant measured with a 220-fold greater concentration of nucleophile.

For comparison the reported<sup>6h</sup> rate constant of 0.0873 s<sup>-1</sup> for hydration of *t*-BuCHC=C=O in 11.1 M H<sub>2</sub>O in CH<sub>3</sub>CN gives an estimated  $k_2$  of 7.9 × 10<sup>-3</sup> s<sup>-1</sup> M<sup>-1</sup>, which combined with the reported<sup>5b</sup>  $k_2$  for *t*-BuCH=C=O with *n*-BuNH<sub>2</sub> in CH<sub>3</sub>CN gives k(*n*-BuNH<sub>2</sub>)/k(H<sub>2</sub>O) of 2.0 × 10<sup>9</sup>.

To test the generality of this behavior the amination of other unreactive ketenes was studied. The sterically protected *t*-Bu<sub>2</sub>C=C=O (**10**)<sup>8a,b</sup> proved to be enormously deactivated toward amination, and gave the amide *t*-Bu<sub>2</sub>-CHCONHBu-*n* after reaction with neat *n*-BuNH<sub>2</sub> for 8

<sup>(7) (</sup>a) McClelland, R. A.; Kanagasabapathy, V. M.; Banait, N. S.; Steenken, S. *J. Am. Chem. Soc.* **1992**, *114*, 1816–1823. (b) Fischer, M.; Wan, P. *J. Am. Chem. Soc.* **1998**, *120*, 2680–2681.

<sup>(8) (</sup>a) Olah, G. A.; Wu, A.; Farooq, O. *Synthesis* **1989**, 566–567. (b) Hofmann, P.; Moya, L. A.; Kain, I. *Synthesis* **1986**, 43–44. (c) Schaumann, E.; Ehlers, J. *Chem. Ber.* **1979**, *112*, 1000–1011. (d) Allen, A. D.; Baigrie, L. M.; Gong, L.; Tidwell, T. T. *Can. J. Chem.* **1991**, *69*, 138–145.



**Figure 1.** Rate constants for reaction of PhMe<sub>2</sub>SiCH=C=O (6) versus [amine] in CH<sub>3</sub>CN and fit by eq 3: (a) *n*-BuNH<sub>2</sub>, (b) morpholine, (c) CF<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>.



**Figure 2.** Rate constants for reaction of *t*-BuC(*i*-Pr)=C=O (**11**) versus [*n*-BuNH<sub>2</sub>] in CH<sub>3</sub>CN and fit by eq 14.

days at room temperature. Measured rate constants are reported in Table 4 (Supporting Information), with  $k_{obs}$ of  $1.35 \times 10^{-5} \text{ s}^{-1}$  at 25 °C in neat *n*-BuNH<sub>2</sub>,  $\Delta H^{\ddagger} = 6.96 \pm 0.49$  kcal/mol, and  $\Delta S^{\ddagger}$  of  $-57.3 \pm 8.7$  eu. The large negative value of the latter resembles the gas-phase value calculated for amination of CH<sub>2</sub>=C=O to give **2** (eq 1) of  $-45.2 \text{ eu.}^{6e}$  The reported<sup>5b</sup> second-order rate constant for the reaction of *t*-BuCH=C=O with *n*-BuNH<sub>2</sub> in CH<sub>3</sub>CN of  $k_2 = 1.6 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$  gives a calculated  $k_{obs}$  for neat (10.1 M) *n*-BuNH<sub>2</sub> of  $1.6 \times 10^7 \text{ s}^{-1}$ , indicating a rate ratio for this reaction of k(t-BuCH=C=O)/k(t-Bu<sub>2</sub>C=C=O) of  $10^{12}$ .

The less-crowded homologue *t*-BuC(*i*-Pr)=C=O (**11**)<sup>8c,d</sup> proved to be much more reactive toward *n*-BuNH<sub>2</sub> than is *t*-Bu<sub>2</sub>C=C=O (**10**), and rate constants measured in CH<sub>3</sub>CN (Table 5, Supporting Information) also showed a higher than first-order dependence of  $k_{obs}$  on [*n*-BuNH<sub>2</sub>]. These rates gave a good fit (Figure 2) with eq 14, with  $k_d$ = (0.552 ± 0.023) M<sup>-2</sup> s<sup>-1</sup> and  $k_e$  = (2.19 ± 0.28) M<sup>-1</sup>. For neat *n*-BuNH<sub>2</sub> (10.1 M), the predicted rate constant for **11** is 2.4 s<sup>-1</sup>, leading to a rate ratio k(11)/k(10) of 1.8 × 10<sup>5</sup>.

$$k_{\rm obs} = k_{\rm d}[\text{amine}]^2 / (k_{\rm e}[\text{amine}] + 1)$$
(14)

The reaction scheme of eq 15 leads to the rate expression in eq 16 which with the steady-state eq 17 leads to eq 18, which has the form of eq 14, with  $k_d = k_2 k_1/k_{-1}$  and  $k_e = k_2/k_{-1}$ , and from the observed fit  $k_2/k_{-1} = 2.19$  and  $k_1 = 0.252 \text{ M}^{-1} \text{ s}^{-1}$ .

ketene + amine 
$$\xrightarrow[k_{-1}]{k_{-1}}$$
 complex  $\xrightarrow[amine]{k_2}$  amide (15)

 $-d[ketene]/dt = k_1[ketene][amine] - k_{-1}[complex]$ (16)

$$d[complex]/dt = k_1[ketene][amine] - (k_{-1} + k_2[amine])[complex] = 0 (17)$$

-d[ketene]/dt =

$$[k_{\rm d}[\text{amine}]^2/(k_{\rm e}[\text{amine}] + 1)][\text{ketene}]$$
 (18)

This result shows that the occurrence of higher order terms in [amine] in ketene amination is not a feature only of silvlated ketenes. The appearance of this behavior depends on the ketene structure in that for less reactive ketenes initial attack of a single amine molecule is not rate limiting but is reversible, and further steps involving one or more additional amine molecules are kinetically significant. In the reported<sup>5a-c,g</sup> studies where a firstorder dependence of  $k_{obs}$  on [amine] for ketene amination is observed the initial reaction of these more reactive ketenes with a single amine molecule is irreversible. Additional amine molecules are, however, involved in the subsequent product forming steps, as the formation of intermediate amide enols and their amine-catalyzed conversion to amides was observed.<sup>5b</sup> For PhCH=C=O, the rate constant for the amine-catalyzed conversion of the initially formed amide enol to the amide was 24 times less than that for formation of the amide enol.<sup>5b</sup>

In the case of **6** studied here, direct reaction of the ketene with amine dimers or trimers may be unimportant, as the degree of association of amines in  $CH_3CN$  at the concentrations used has been found to be low.<sup>9</sup> The amination may proceed by two successive reversible reactions with individual amine molecules (eq 19), leading to complex **8** shown in eq 4.

ketene + amine  $\stackrel{\text{amine}}{\leftarrow}$  ketene · amine  $\stackrel{\text{amine}}{\leftarrow}$  (ketene) · 2 amine (19)

In a previous study<sup>8d</sup> it was found that **11** reacted with *t*-BuLi to give reduction by hydride transfer with an 83/ 17 preference for delivery syn to the isopropyl group, and also addition of the *tert*-butyl exclusively from the syn side. Molecular mechanics calculations of the stabilities of the E/Z isomers of these products indicated a slight (0.2 kcal/mol) preference for the *E* isomer **12** in the product of hydride attack, whereas for *t*-Bu attack there was a calculated 10.8 kcal/mol preference for the *Z* isomer from addition syn to *i*-Pr (eq 20).



A model **13** for the rate-limiting transition state for n-BuNH<sub>2</sub> addition to **11** (step 2, eq 15) involving two molecules of n-BuNH<sub>2</sub> is based on the calculated transition structure **1**<sup>6e</sup> and involves in-plane attack by the amine nitrogen on the carbonyl carbon syn to the isopropyl group to give an unobserved amide enol which forms the amide **14** (eq 21). The large rate acceleration relative to *t*-Bu<sub>2</sub>C=C=O (**10**) could arise from the con-

formation shown which greatly reduces the steric interaction over that for amination of **10**.



The enormous steric retardation expressed in the k(t-BuCH=C=O)/k(t-Bu<sub>2</sub>C=C=O) rate ratio of 10<sup>12</sup> for reaction with *n*-BuNH<sub>2</sub> may be compared with the corresponding rate ratio of  $9.3 \times 10^4$  for reaction with  $H_2O^{6h}$ and indicates a much larger effect in the former process. The model transition structure 13 indicates the bulky ketene substituents would not only interact with nucleophilic nitrogen but also suggests there would be a severe interaction involving the *n*-butyl group on this nitrogen, which would be directed toward one of the tert-butyl groups on  $C_{\beta}$  of the ketene **10**. The rate constant for hydration of 11 in H<sub>2</sub>O at 25 °C has now been measured as  $4.71 \times 10^{-4}$  s<sup>-1</sup>, and for this reaction, the ratio *k*(**11**)/ *k*(**10**) is only 3, as compared to the corresponding ratio for reaction with *n*-BuNH<sub>2</sub> estimated above of  $1.8 \times 10^5$ . This difference also reflects a much larger steric effect for the amination reaction.

Rate constants measured for reaction of PhMe<sub>2</sub>SiCH= C=O (**6**) with CF<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub> containing CF<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+</sup>CF<sub>3</sub>-CO<sub>2</sub><sup>-</sup> (Table 6, Supporting Information) were strictly linear in [CF<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+</sup>], with  $k_{\rm BH^+} = 3.91 \pm 0.05 \, {\rm M^{-1}}$ s<sup>-1</sup>, indicating general acid catalysis of the reaction was occurring (eq 22). The initial protonation of **6** at C<sub>β</sub> is

$$PhMe_{2}SiCH = C = O \xrightarrow{BH^{+}} PhMe_{2}SiCH_{2}C^{+} = O \xrightarrow{CF_{3}CH_{2}NH_{2}}{-H^{+}}$$
6
PhMe\_{2}SiCH\_{2}CONHCH\_{2}CF\_{3} (22)
7b

consistent with the enhanced electrophilic reactivity of silylketenes noted above.<sup>6f</sup> However the presence of n-BuNH<sub>3</sub><sup>+</sup>CF<sub>3</sub>CO<sub>2</sub><sup>-</sup> had no effect on the reactivity of **6** with n-BuNH<sub>2</sub>, indicating this amine conjugate acid is insufficiently acidic to catalyze the reaction in competition with the uncatalyzed reaction.

General acid catalysis of the hydration of Me<sub>3</sub>SiCH= C=O<sup>6f</sup> and of *t*-Bu<sub>2</sub>C=C=O (**10**)<sup>6g</sup> has been observed previously. For the silylketene the process shown in eq 22 would be accelerated by electron donation from the C-Si bond to the developing positively charged center.

In summary whether ketene aminations occur with first-, second-, or third-order dependences on [amine] is contingent upon the ketene structure, in that unstable and reactive ketenes show only a first-order dependence on [amine], as the formation of the initial amine/ketene complex is rate limiting. With more stable and less reactive ketenes this first step is reversible, and reaction with a second or third amine becomes rate limiting, leading to dependences on [amine]<sup>2</sup> and [amine]<sup>3</sup>. These findings are in harmony with previous theoretical studies.<sup>6e</sup> The observed absence<sup>5a</sup> of a systematic dependence

<sup>(9) (</sup>a) Sinsheimer, J. E.; Keuhnelian, A. M. *Anal. Chem.* **1974**, *46*, 89–93. (b) Peshekhodov, P. B.; Petrov, A. N.; Al'per, G. A. *Russ. J. Gen. Chem.* **1993**, *63*, 854–856.

dence of amination rates in H<sub>2</sub>O on amine basicity arises from the rate-leveling effect of amine desolvation on the rates,<sup>7a</sup> as noted previously.<sup>6e</sup> Extremely high reactivity ratios k(n-BuNH<sub>2</sub>)/ $k(H_2O)$  for PhMe<sub>2</sub>SiCH=C=O of 10<sup>13</sup> and for k(t-BuCH=C=O)/k(t-Bu<sub>2</sub>C=C=O) with *n*-BuNH<sub>2</sub> of 10<sup>12</sup> are observed, as well as general acid-catalyzed amination of PhMe<sub>2</sub>SiCH=C=O with CF<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+</sup>.

## **Experimental Section**

Amination kinetics were measured either by conventional UV spectroscopy using a Perkin-Elmer Lambda 12 instrument or by stopped flow using a HiTech Scientific instrument. The program SigmaPlot was used to fit the kinetics, using a statistical error weighted fitting, as reported in Table 1. Other kinetic expressions and constant error weighting gave less satisfactory fits of the data, as detailed in the Supporting Information (Table 7, plots 1–21). The sample of the acid precursor to *t*-BuC(*i*-Pr)=C=O (**11**) ( $\lambda$  225 nm,  $\epsilon$  = 350; 379 nm,  $\epsilon$  = 5) was prepared by Dr. Lynn Baigrie.<sup>8d</sup> The hydration of **11** was measured by injecting 20–50  $\mu$ L of a 5.2 × 10<sup>-3</sup> M solution of **11** in CH<sub>3</sub>CN into 2 mL of H<sub>2</sub>O and observing the decrease in absorption at 215 nm.

N-n-Butyl-2-(phenyldimethylsilyl)acetamide (7a). A solution of *n*-BuNH<sub>2</sub> (20 µL, 2.07 M in CDCl<sub>3</sub>, 0.041 mmol) was added to PhMe<sub>2</sub>SiCH=C=O (6, 0.0354 g, 0.201 mmol) in 0.8 mL of CDCl<sub>3</sub> in an NMR tube at -20 °C. The <sup>1</sup>H NMR spectrum revealed the presence of both reactants and the product so an additional 0.16 mmol n-BuNH<sub>2</sub> was added, and no more 6 was detected. The solvent was evaporated, and the product was purified by chromatography on silica gel (2% Et<sub>3</sub>N in CH<sub>2</sub>Cl<sub>2</sub>) to give **7a** (0.0507 g, 0.204 mmol, 100%) as a yellow oil: <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.40 (s, 6, Me<sub>3</sub>Si), 0.85 (t, J = 7.4 Hz, CH<sub>3</sub>), 1.2-1.3 (m, 4, CH<sub>2</sub>CH<sub>2</sub>), 1.95 (s, 2, CH<sub>2</sub>CO), 3.11 (m, 2, CH<sub>2</sub>N), 5.08 (s, 1, NH), 7.3–7.5 (m, 5, Ph); <sup>13</sup>C NMR  $\delta$  –3.07, 13.6, 19.9, 28.6, 31.7, 39.2, 127.9, 129.4, 133.5, 137.5, 171.3; IR (CDCl<sub>3</sub>) 3452 (NH), 1648 (C=O), 1514 (NH) cm<sup>-1</sup>; EIMS m/z 248 (M<sup>+</sup> - H, 3), 234 (M<sup>+</sup> - CH<sub>3</sub>, 91), 192 (M<sup>+</sup> - C<sub>4</sub>H<sub>9</sub>, 50), 172 (M<sup>+</sup> - C<sub>6</sub>H<sub>5</sub>, 82), 135 (PhSiMe<sub>2</sub><sup>+</sup>, 100); HRMS m/z calcd for  $C_{14}H_{22}NOSi$  248.1471, found 248.1461; calcd for  $C_{13}H_{20}NOSi$  234.1314, found 234.1308.

*N*-2',2',2'.-**Trifluoroethyl-2-(phenyldimethylsilyl)acetamide (7b).** Compound **7b** was prepared similarly to **7a** as the only observable product as a white solid without purification: mp 74–75 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.42 (s, 6, Me<sub>2</sub>Si), 2.05 (s, 2, CH<sub>2</sub>Si), 3.78 (dq, J = 9.2 Hz, J = 6.5 Hz); <sup>19</sup>F NMR (CDCl<sub>3</sub>) –73.05 (t, J = 9 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  –3.3, 28.7, 40.4 (q, J = 34.4 Hz), 120.4 (q, J = 278.3 Hz), 128.1, 129.7, 133.4, 136.8, 171.7; <sup>19</sup>F NMR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (CDCl<sub>3</sub>)  $\delta$  –73.05 (t, J = 9 Hz); IR (TL) (TL) (TL) (TL) (T

*N*-*n*-Butyl-2,2-bis-*tert*-butylacetamide. A solution of 0.0211 g (0.0137 mmol) *t*-Bu<sub>2</sub>C=C=O (**10**) was left for 8 days at room temperature in *n*-BuNH<sub>2</sub>, and the solvent was evaporated to give the amide as the only observable product without purification: mp 78–80 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  0.90 (t, 3, *J* = 7.2 Hz, CH<sub>3</sub>), 1.10 (s, 18, *t*-Bu<sub>2</sub>), 1.32 (sextet, 2, *J* = 8.1 Hz, CH<sub>2</sub>), 1.46 (quintet, 2, *J* = 8 Hz, CH<sub>2</sub>), 1.62 (s, 1, CH<sub>3</sub>), 3.19 (q, 2, *J* = 8 Hz, NCH<sub>2</sub>), 5.38 (s, 1, NH); <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$  13.7, 20.2, 31.1, 31.6, 35.0, 38.7, 66.3, 174.3; IR (CDCl<sub>3</sub>) 3456, 1663, 1506 cm<sup>-1</sup>; EIMS *m*/*z* 228 (MH<sup>+</sup>, 0.2), 171 (29), 156 (M<sup>+</sup> − NC<sub>4</sub>H<sub>8</sub>, 100); HRMS *m*/*z* calcd for C<sub>14</sub>H<sub>30</sub>NO 228.2325, found 228.2327; calcd for C<sub>10</sub>H<sub>21</sub>NO 171.1623, found 171.1620.

**Acknowledgment.** Financial support by the Natural Sciences and Engineering Research Council of Canada and helpful discussions with Professor O. S. Tee are gratefully acknowledged.

**Supporting Information Available:** Kinetic and spectral data (52 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO982054L